[1] C. Fare, L. Turcani, and E. O. Pyzer-Knapp, “Powerful, transferable representations for molecules through intelligent task selection in deep multitask networks,” arXiv:1809.06334 [physics, stat], Sep. 2018, Accessed: Sep. 07, 2020. [Online]. Available: http://arxiv.org/abs/1809.06334.
[2] J.-P. Liu, H. Ø. Kolden, H. K. Krovi, N. F. Loureiro, K. Trivisa, and A. M. Childs, “Efficient quantum algorithm for dissipative nonlinear differential equations,” arXiv:2011.03185 [physics, physics:quant-ph], Nov. 2020, Accessed: Nov. 10, 2020. [Online]. Available: http://arxiv.org/abs/2011.03185.
[3] S. Lloyd et al., “Quantum algorithm for nonlinear differential equations,” arXiv:2011.06571 [nlin, physics:quant-ph], Nov. 2020, Accessed: Nov. 16, 2020. [Online]. Available: http://arxiv.org/abs/2011.06571.
[4] M. Lubasch, J. Joo, P. Moinier, M. Kiffner, and D. Jaksch, “Variational quantum algorithms for nonlinear problems,” Phys. Rev. A, vol. 101, no. 1, p. 010301, Jan. 2020, doi: 10.1103/PhysRevA.101.010301.
[5] J. Yepez, “Quantum Computation of Fluid Dynamics,” in Quantum Computing and Quantum Communications, vol. 1509, C. P. Williams, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 34–60.
[6] A. Mezzacapo, M. Sanz, L. Lamata, I. L. Egusquiza, S. Succi, and E. Solano, “Quantum Simulator for Transport Phenomena in Fluid Flows,” Sci Rep, vol. 5, no. 1, p. 13153, Oct. 2015, doi: 10.1038/srep13153.
[7] F. Gaitan, “Finding flows of a Navier–Stokes fluid through quantum computing,” npj Quantum Inf, vol. 6, no. 1, p. 61, Dec. 2020, doi: 10.1038/s41534-020-00291-0.
[8] S. I. Ngo and Y.-I. Lim, “Multiscale Eulerian CFD of Chemical Processes: A Review,” ChemEngineering, vol. 4, no. 2, p. 23, Mar. 2020, doi: 10.3390/chemengineering4020023.
[9] D. Balamurugan and P. J. Ortoleva, “Multiscale Simulation of Quantum Nanosystems: Plasmonics of Silver Particles,” p. 25.
[10] S. Endo, J. Sun, Y. Li, S. C. Benjamin, and X. Yuan, “Variational Quantum Simulation of General Processes,” Phys. Rev. Lett., vol. 125, no. 1, p. 010501, Jun. 2020, doi: 10.1103/PhysRevLett.125.010501.
[11] J. Biamonte, “Universal Variational Quantum Computation,” arXiv:1903.04500 [quant-ph], Nov. 2019, Accessed: Sep. 07, 2020. [Online]. Available: http://arxiv.org/abs/1903.04500.
[12] D. Drosdoff, A. Widom, J. Swain, Y. N. Srivastava, V. Parihar, and S. Sivasubramanian, “Towards a Quantum Fluid Mechanical Theory of Turbulence,” arXiv:0903.0105 [cond-mat, physics:physics], Feb. 2009, Accessed: Sep. 07, 2020. [Online]. Available: http://arxiv.org/abs/0903.0105.
[13] S. Endlich, “The Effective Field Theory Approach to Fluid Dynamics,” Columbia University, 2013.
[14] J. Wang, “The Effective Field Theory Approach to Fluid Dynamics, Modified Gravity Theories, and Cosmology,” p. 151.
[15] K. Gustafson, “Graph Theory in the Approximation Theory of Fluid Dynamics,” in Anniversary Volume on Approximation Theory and Functional Analysis, vol. 65, P. L. Butzer, R. L. Stens, and B. Sz.-Nagy, Eds. Basel: Birkhäuser Basel, 1984, pp. 511–519.
[16] R. A. Hidalgo and M. Godoy Molina, “Navier–Stokes Equations on Weighted Graphs,” Complex Anal. Oper. Theory, vol. 4, no. 3, pp. 525–540, Aug. 2010, doi: 10.1007/s11785-010-0071-8.
[17] A. G. Nair and K. Taira, “Network-theoretic approach to sparsified discrete vortex dynamics,” J. Fluid Mech., vol. 768, pp. 549–571, Apr. 2015, doi: 10.1017/jfm.2015.97.
[18] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. W. Battaglia, “Learning to Simulate Complex Physics with Graph Networks,” arXiv:2002.09405 [physics, stat], Feb. 2020, Accessed: Sep. 07, 2020. [Online]. Available: http://arxiv.org/abs/2002.09405.
[19] Y. Shin, J. Darbon, and G. E. Karniadakis, “On the Convergence and generalization of Physics Informed Neural Networks,” arXiv:2004.01806 [cs, math], Apr. 2020, Accessed: Sep. 07, 2020. [Online]. Available: http://arxiv.org/abs/2004.01806.
[20] B. B. Machta, R. Chachra, M. K. Transtrum, and J. P. Sethna, “Parameter Space Compression Underlies Emergent Theories and Predictive Models,” Science, vol. 342, no. 6158, pp. 604–607, Nov. 2013, doi: 10.1126/science.1238723.
[21] S.-M. Udrescu, A. Tan, J. Feng, O. Neto, T. Wu, and M. Tegmark, “AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity,” arXiv:2006.10782 [physics, stat], Jun. 2020, Accessed: Sep. 07, 2020. [Online]. Available: http://arxiv.org/abs/2006.10782.
[22] G. ’t Hooft, “The Cellular Automaton Interpretation of Quantum Mechanics,” arXiv:1405.1548 [quant-ph], Dec. 2015, Accessed: Sep. 07, 2020. [Online]. Available: http://arxiv.org/abs/1405.1548.
[23] T. Banks, “Finite Deformations of Quantum Mechanics,” arXiv:2001.07662 [gr-qc, physics:hep-th, physics:quant-ph], Jan. 2020, Accessed: Sep. 07, 2020. [Online]. Available: http://arxiv.org/abs/2001.07662.
[24] M. Rangamani, “Gravity & Hydrodynamics: Lectures on the fluid-gravity correspondence,” Class. Quantum Grav., vol. 26, no. 22, p. 224003, Nov. 2009, doi: 10.1088/0264-9381/26/22/224003.
[25] F. S. Mayor, A. Askar, and H. A. Rabitz, “Quantum fluid dynamics in the Lagrangian representation and applications to photodissociation problems,” The Journal of Chemical Physics, vol. 111, no. 6, pp. 2423–2435, Aug. 1999, doi: 10.1063/1.479520.
[26] I. F. Barna, M. A. Pocsai, and L. Mátyás, “Self-Similarity Analysis of the Nonlinear Schrödinger Equation in the Madelung Form,” Advances in Mathematical Physics, vol. 2018, pp. 1–5, Oct. 2018, doi: 10.1155/2018/7087295.
[27] P. Holland, “Uniting the wave and the particle in quantum mechanics,” Quantum Stud.: Math. Found., vol. 7, no. 1, pp. 155–178, Mar. 2020, doi: 10.1007/s40509-019-00207-4.
[28] S. Ghosh and S. K. Ghosh, “A Path Integral approach to Quantum Fluid Dynamics,” arXiv:2002.00255 [quant-ph], Jun. 2020, Accessed: Sep. 07, 2020. [Online]. Available: http://arxiv.org/abs/2002.00255.
[29] R. J. Harvey, “Navier-Stokes Analog of Quantum Mechanics,” Phys. Rev., vol. 152, no. 4, pp. 1115–1115, Dec. 1966, doi: 10.1103/PhysRev.152.1115.
[30] A. Muriel, L. Jirkovsky, and M. Dresden, “A quantum model for the onset of turbulence,” Physica D: Nonlinear Phenomena, vol. 94, no. 3, pp. 103–115, Jul. 1996, doi: 10.1016/0167-2789(96)00005-X.
[31] R. McKeown, R. Ostilla-Monico, A. Pumir, M. P. Brenner, and S. M. Rubinstein, “Turbulence generation through an iterative cascade of the elliptical instability,” arXiv:1908.01804 [physics], Nov. 2019, Accessed: Sep. 07, 2020. [Online]. Available: http://arxiv.org/abs/1908.01804.
[32] N. Navon, A. L. Gaunt, R. P. Smith, and Z. Hadzibabic, “Emergence of a turbulent cascade in a quantum gas,” Nature, vol. 539, no. 7627, pp. 72–75, Nov. 2016, doi: 10.1038/nature20114.
[33] M. S. Paoletti and D. P. Lathrop, “Quantum Turbulence,” Annu. Rev. Condens. Matter Phys., vol. 2, no. 1, pp. 213–234, Mar. 2011, doi: 10.1146/annurev-conmatphys-062910-140533.
[34] S. A. Strong, “GEOMETRIC QUANTUM HYDRODYNAMICS AND BOSE-EINSTEIN CONDENSATES: NON-HAMILTONIAN EVOLUTION OF VORTEX LINES,” p. 149.
[35] P. Vadasz, “Rendering the Navier–Stokes Equations for a Compressible Fluid into the Schrödinger Equation for Quantum Mechanics,” Fluids, vol. 1, no. 2, p. 18, Jun. 2016, doi: 10.3390/fluids1020018.
[36] D. E. Bruschi and F. K. Wilhelm, “Self gravity affects quantum states,” arXiv:2006.11768 [gr-qc, physics:quant-ph], Jul. 2020, Accessed: Sep. 07, 2020. [Online]. Available: http://arxiv.org/abs/2006.11768.
[37] M. Li, X. Pu, and S. Wang, “Quasineutral limit for the quantum Navier-Stokes-Poisson equation,” arXiv:1510.03960 [math-ph], Aug. 2016, Accessed: Sep. 07, 2020. [Online]. Available: http://arxiv.org/abs/1510.03960.
[38] A. Jüngel, J. L. López, and J. Montejo–Gámez, “A New Derivation of the Quantum Navier–Stokes Equations in the Wigner–Fokker–Planck Approach,” J Stat Phys, vol. 145, no. 6, pp. 1661–1673, Dec. 2011, doi: 10.1007/s10955-011-0388-3.
[39] T. Koide and T. Kodama, “Navier-Stokes, Gross-Pitaevskii and Generalized Diffusion Equations using Stochastic Variational Method,” J. Phys. A: Math. Theor., vol. 45, no. 25, p. 255204, Jun. 2012, doi: 10.1088/1751-8113/45/25/255204.
[40] P. F. de Cordoba, J. M. Isidro, and J. V. Molina, “Schroedinger vs. Navier-Stokes,” arXiv:1409.7036 [math-ph, physics:quant-ph], Sep. 2014, Accessed: Sep. 07, 2020. [Online]. Available: http://arxiv.org/abs/1409.7036.
[41] P. Boes, H. Wilming, R. Gallego, and J. Eisert, “Catalytic Quantum Randomness,” Phys. Rev. X, vol. 8, no. 4, p. 041016, Oct. 2018, doi: 10.1103/PhysRevX.8.041016.
[42] E. Cohen and A. Carmi, “In Praise of Quantum Uncertainty,” Entropy, vol. 22, no. 3, p. 302, Mar. 2020, doi: 10.3390/e22030302.
[43] V. Christianto and F. Smarandache, “A Review of Five Approaches of Quantum Potential Including Madelung Hydrodynamics Formulation*,” p. 9.
[44] J. W. M. Bush, Y. Couder, T. Gilet, P. A. Milewski, and A. Nachbin, “Introduction to focus issue on hydrodynamic quantum analogs,” Chaos, vol. 28, no. 9, p. 096001, Sep. 2018, doi: 10.1063/1.5055383.
[45] P. V. Coveney and R. R. Highfield, “From digital hype to analogue reality: Universal simulation beyond the quantum and exascale eras,” Journal of Computational Science, p. 101093, Mar. 2020, doi: 10.1016/j.jocs.2020.101093.
[46] D. Llewellyn et al., “Chip-to-chip quantum teleportation and multi-photon entanglement in silicon,” Nat. Phys., vol. 16, no. 2, pp. 148–153, Feb. 2020, doi: 10.1038/s41567-019-0727-x.
[47] M. Cheikh, “Microfluidic transistors for analog microflows amplification and control,” Microfluid Nanofluid, p. 24, 2016.
[48] X. He et al., “Strong optical coupling through superfluid Brillouin lasing,” Nat. Phys., vol. 16, no. 4, pp. 417–421, Apr. 2020, doi: 10.1038/s41567-020-0785-0.
[49] D. P. DiVincenzo and IBM, “The Physical Implementation of Quantum Computation,” arXiv:quant-ph/0002077, Apr. 2000, doi: 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E.
[50] R. Steijl, “Quantum Algorithms for Fluid Simulations,” in Advances in Quantum Communication and Information, F. Bulnes, V. N. Stavrou, O. Morozov, and A. V. Bourdine, Eds. IntechOpen, 2020.
[51] K. P. Griffin, S. S. Jain, T. J. Flint, and W. H. R. Chan, “Investigation of quantum algorithms for direct numerical simulation of the Navier-Stokes equations,” p. 17, 2019.
[52] M. Heyl, P. Hauke, and P. Zoller, “Quantum localization bounds Trotter errors in digital quantum simulation,” Sci. Adv., vol. 5, no. 4, p. eaau8342, Apr. 2019, doi: 10.1126/sciadv.aau8342.
[53] J. I. Colless et al., “Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm,” Phys. Rev. X, vol. 8, no. 1, p. 011021, Feb. 2018, doi: 10.1103/PhysRevX.8.011021.
[54] E. G. Brown, O. Goktas, and W. K. Tham, “Quantum Amplitude Estimation in the Presence of Noise,” arXiv:2006.14145 [quant-ph], Jun. 2020, Accessed: Sep. 07, 2020. [Online]. Available: http://arxiv.org/abs/2006.14145.
[55] J. Slotnick et al., “CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences,” p. 58.
[56] Y. Lu et al., “Open-Source, Python-Based Redevelopment of the ChemShell Multiscale QM/MM Environment,” J. Chem. Theory Comput., vol. 15, no. 2, pp. 1317–1328, Feb. 2019, doi: 10.1021/acs.jctc.8b01036.
[57] G.-W. Wei, “MULTISCALE, MULTIPHYSICS AND MULTIDOMAIN MODELS I: BASIC THEORY,” J. Theor. Comput. Chem., vol. 12, no. 08, p. 1341006, Dec. 2013, doi: 10.1142/S021963361341006X.
[58] O. Higgott, D. Wang, and S. Brierley, “Variational Quantum Computation of Excited States,” Quantum, vol. 3, p. 156, Jul. 2019, doi: 10.22331/q-2019-07-01-156.
[59] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, “Elucidating Reaction Mechanisms on Quantum Computers,” Proc Natl Acad Sci USA, vol. 114, no. 29, pp. 7555–7560, Jul. 2017, doi: 10.1073/pnas.1619152114.
[60] M.-H. Yung, J. D. Whitfield, S. Boixo, D. G. Tempel, and A. Aspuru-Guzik, “Introduction to Quantum Algorithms for Physics and Chemistry,” arXiv:1203.1331 [cond-mat, physics:quant-ph], pp. 67–106, Mar. 2014, doi: 10.1002/9781118742631.ch03.
[61] S. V. Polyakov, V. O. Podryga, and D. V. Puzyrkov, “High Performance Computing in Multiscale Problems of Gas Dynamics,” Lobachevskii J Math, vol. 39, no. 9, pp. 1239–1250, Nov. 2018, doi: 10.1134/S1995080218090160.
[62] V. Kumaravel, J. Bartlett, and S. C. Pillai, “Photoelectrochemical Conversion of Carbon Dioxide (CO 2 ) into Fuels and Value-Added Products,” ACS Energy Lett., vol. 5, no. 2, pp. 486–519, Feb. 2020, doi: 10.1021/acsenergylett.9b02585.
[63] W. Jinghua, G. Zhendong, and C. Jian, “Efficient Cellular Automata Method for Heat Transfer in Tumor,” J. Heat Transfer, vol. 136, no. 7, Jul. 2014, doi: 10.1115/1.4027147.
[64] C. K. Macnamara, A. Caiazzo, I. Ramis-Conde, and M. A. J. Chaplain, “Computational modelling and simulation of cancer growth and migration within a 3D heterogeneous tissue: The effects of fibre and vascular structure,” Journal of Computational Science, vol. 40, p. 101067, Feb. 2020, doi: 10.1016/j.jocs.2019.101067.
[65] D. Sels, H. Dashti, S. Mora, O. Demler, and E. Demler, “Quantum approximate Bayesian computation for NMR model inference,” Nat Mach Intell, vol. 2, no. 7, pp. 396–402, Jul. 2020, doi: 10.1038/s42256-020-0198-x.
[66] J. Lakhlili, O. Hoenen, O. O. Luk, and D. P. Coster, “Uncertainty Quantification for Multiscale Fusion Plasma Simulations with VECMA Toolkit,” in Computational Science – ICCS 2020, vol. 12143, V. V. Krzhizhanovskaya, G. Závodszky, M. H. Lees, J. J. Dongarra, P. M. A. Sloot, S. Brissos, and J. Teixeira, Eds. Cham: Springer International Publishing, 2020, pp. 719–730.
[67] N. V. Pogorelov, S. N. Borovikov, J. Heerikhuisen, I. A. Kryukov, and G. P. Zank, “Modeling Heliospheric Phenomena with the Multi-Scale Fluid-Kinetic Simulation Suite,” p. 8.
[68] J. Badur, M. Feidt, and P. Ziółkowski, “Neoclassical Navier–Stokes Equations Considering the Gyftopoulos–Beretta Exposition of Thermodynamics,” Energies, vol. 13, no. 7, p. 1656, Apr. 2020, doi: 10.3390/en13071656.
[69] J. V. Molina, “Mappings between Thermodynamics and Quantum Mechanics that support its interpretation as an emergent theory,” p. 89.
[70] I. Bredberg, C. Keeler, V. Lysov, and A. Strominger, “From Navier-Stokes To Einstein,” J. High Energ. Phys., vol. 2012, no. 7, p. 146, Jul. 2012, doi: 10.1007/JHEP07(2012)146.
[71] P. W. Shor, “Introduction to Quantum Algorithms,” arXiv:quant-ph/0005003, Jul. 2001, Accessed: Sep. 07, 2020. [Online]. Available: http://arxiv.org/abs/quant-ph/0005003.
[72] M. Möller and C. Vuik, “On the impact of quantum computing technology on future developments in high-performance scientific computing,” Ethics Inf Technol, vol. 19, no. 4, pp. 253–269, Dec. 2017, doi: 10.1007/s10676-017-9438-0.